Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 122, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741214

RESUMO

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Assuntos
Células-Tronco Pluripotentes , Análise de Célula Única , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Genoma Humano , Eucromatina/genética , Eucromatina/metabolismo , Cromatina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Heterocromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Montagem e Desmontagem da Cromatina
2.
Front Cell Dev Biol ; 9: 675411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124061

RESUMO

It has been well established that leukemia inhibitory factor (LIF) is essential for maintaining naïve pluripotency of embryonic stem cells (ESCs). Oncostatin M (OSM) is a member of the IL-6 family of cytokines which share gp130 as a receptor subunit, and the OSM-gp130 complex can recruit either LIF receptor ß or OSM receptor ß. Here we show that OSM can completely replace LIF to maintain naïve pluripotency of ESCs. Mouse ESCs (mESCs) cultured in the presence of LIF or OSM not only express pluripotency genes at similar levels but also exhibit the same developmental pluripotency as evidenced by the generation of germline competent chimeras, supporting previous findings. Moreover, we demonstrate by tetraploid embryo complementation assay, the most stringent functional test of authentic pluripotency that mESCs cultured in OSM produce viable all-ESC pups. Furthermore, telomere length and telomerase activity, which are also crucial for unlimited self-renewal and genomic stability of mESCs, do not differ in mESCs cultured under OSM or LIF. The transcriptome of mESCs cultured in OSM overall is very similar to that of LIF, and OSM activates Stat3 signaling pathway, like LIF. Additionally, OSM upregulates pentose and glucuronate interconversion, ascorbate and aldarate metabolism, and steroid and retinol metabolic pathways. Although the significance of these pathways remains to be determined, our data shows that OSM can maintain naïve pluripotent stem cells in the absence of LIF.

3.
Nucleic Acids Res ; 49(2): 760-775, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33347580

RESUMO

Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.


Assuntos
Micromanipulação/métodos , Telômero/ultraestrutura , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Biotinilação , Digoxigenina , Humanos , Sequências Repetidas Invertidas , Células K562 , Imãs , Complexo Shelterina , Imagem Individual de Molécula , Telômero/química , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/fisiologia
4.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172005

RESUMO

The development of high-throughput sequencing (next-generation sequencing technology (NGS)) and the continuous increase in experimental throughput require the upstream sample processing steps of NGS to be as simple as possible to improve the efficiency of the entire NGS process. The transposition system has fast "cut and paste" and "copy and paste" functions, and has been innovatively applied to the NGS field. For example, the Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-Seq) uses high-throughput sequencing to detect chromatin regions accessible by Tn5 transposase. Linear Amplification via Transposon Insertion (LIANTI) uses Tn5 transposase for linear amplification, haploid typing, and structural variation detection. Not only is it efficient and simple, it effectively shortens the time for NGS sample library construction, realizes large-scale and rapid sequencing, improves sequencing resolution, and can be flexibly modified for more technological innovation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transposases/genética , Transposases/metabolismo , Animais , Cromatina/genética , Epigenômica/métodos , Variação Genética/genética , Genômica/métodos , Humanos , Análise de Sequência de DNA/métodos , Transposases/fisiologia
5.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905669

RESUMO

Previous studies have shown that regeneration gene 3 (reg3) is significantly expressed in gastric mucosa tissues with Helicobacter pylori (HP) cytotoxin-associated gene A (CagA)-positive (HP-CagA+). CagA-positive HP increases the risk of gastric cancer. The purpose of this study was to investigate the correlation between reg3 and HP-CagA+ and explore the effects of reg3 on the proliferation of gastric cancer cells and the development of tissues and organs. We analyzed the expression of reg3 in human tissues and organs. The results showed that reg3 expression in gastric tissues was significantly higher than that in other tissues and organs. In addition, reg3 influenced the prognosis of gastric, lung, and ovarian cancers. Immunohistochemical analysis indicated that the expression of reg3 and CagA in cancerous tissues was higher than that in adjacent tissues. HP-CagA+ infection of gastric cancer cells promotes reg3 expression, suggesting that reg3 may be a target gene of CagA in gastric cancer, which together affects the formation and development of gastric cancer. reg3 and CagA promote cell proliferation, and then affect the development of mouse tissues and organs by regulating G1/S phase transition of the cell cycle via the formation of the cell cycle-dependent complex CDK4/CyclinD1. This is the first study that shows the influence of CagA on the cell cycle and induction of cell proliferation by promoting reg3 expression.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo Celular , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Proteínas Associadas a Pancreatite/genética , Neoplasias Gástricas/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Camundongos , Proteínas Associadas a Pancreatite/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...